Final Exam MTH 221, Summer 2022

Ayman Badawi

Score =
$$\frac{1}{62}$$

QUESTION 1. (20 points)

- (i) Let $T : R^{2\times 2} \to R^{2\times 2}$ be an *R*-homomorphism, i.e., linear transformation, such that $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} 3a b + 2d & 4b + 7d \\ 5c + d & 6d \end{bmatrix}$. Then the eigenvalues of *T*
 - (a) 3, 7, 5, 6 (b) 3, 4, 5, 6 (c) 3, 4, 1, 6 (d) 3, 4, 7, 6
- (ii) Given A is a 2 × 2 matrix with eigenvalues 1, 2, such that $E_1 = span\{(3,0)\}$ and $E_2 = span\{(0,4)\}$ Then $A^3 =$

$$(a)\begin{bmatrix} 27 & 0\\ 0 & 64 \end{bmatrix} \qquad (b)\begin{bmatrix} 1 & 64\\ 0 & 8 \end{bmatrix} \qquad (c)\begin{bmatrix} 1 & 27\\ 0 & 8 \end{bmatrix} \qquad (d)\begin{bmatrix} 1 & 0\\ 0 & 8 \end{bmatrix}$$

(iii) Let $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ such that |A| = 0. Let D be the solution set of the system of linear equations $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2a_1 + a_2 \\ -2b_1 + b_2 \\ -2c_1 + c_2 \end{bmatrix}$. Then

(a) $D = span\{(-2, 1, 0)\}$ (b) $D = \{(-2, 0, 1)\}$ (c) D is infinite and $(-2, 1, 0) \in D$. (d) $D = \{(-2, 1, 0)\}$ (iv) Let $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ such that |A| = -3. Given $B = \begin{bmatrix} -2a_1 & a_2 & a_3 \\ -2c_1 & c_2 & c_3 \\ -2b_1 & b_2 & b_3 \end{bmatrix}$. Then $|B| = -2b_1 + b_2 + b_3 = b_3$.

(a) -6 (b) 6 (c) 24 (d) -24

(v) Let A be a 3×3 matrix such that $C_A(\alpha) = (\alpha - 1)(\alpha - b)(\alpha - c)$, where $b, c \in R$, Trace(A) = 1 and |A| = -9. Then $|A^2 + I_3|$ is

(a)82 (b) 10 (c) 100 (d) 200

(vi) Let $T: P_3 \to P_3$ be an *R*-homomorphism (linear transformation), such that $T(ax^2 + bx + c) = (3a - b - c)x^2 + 3bx + 3c$. Then *T* has exactly one eigenvalue, say *a*, then $E_a =$ (a) $span\{x^2, x+1\}$ (b) $span\{x-1\}$ (c) $spam\{x^2, x-1\}$ (d) $Span\{-x-1\}$

- (vii) Assume that the normal dot product is defined on \mathbb{R}^4 . Given $\{Q, F, (1,0,0,2)\}$ is an orthogonal basis for a subspace W of \mathbb{R}^4 , for some points Q, F in \mathbb{R}^4 . Given $(4, 23, 51, 13) \in W$. Then $(4, 23, 51, 13) = c_1Q + c_2F + c_3(1, 0, 0, 2)$. Then $c_3 =$
 - (a) 30 (b) 6 (c) 5 (d) 10
- (viii) Given $B = \{(-6, -1), (7, 1)\}$ is a basis for R^2 . Then $[(13, 2)]_B =$ (a) (-1, 1) (b) (15, -103) (c) (-80, 93) (d) (27, -25)

(ix) Let B be a basis for R^3 and $C = \{(2,2), (1,2)\}$ is a basis for R^2 . Let $T : R^3 \to R^2$ be a linear transformation such the coordinate matrix presentation of T with respect to B and C is $[T]_{B,C} = \begin{bmatrix} 1 & 1 & 2 \\ -1 & -1 & 1 \end{bmatrix}$. Then T(2,0,1) =

- (a) (4, -1) (b)(5, -1) (c) (9, 8) (d) (7, 6)
- (x) consider the "mimic dot product" on $R^{2\times 2}$, i.e., for every $A, B \in R^{2\times 2}$, $\langle A, B \rangle = Trace(B^T A)$. Then the following matrices are orthogonal

(a)
$$A = \begin{bmatrix} 1 & 4 \\ -2 & 2 \end{bmatrix}, B = \begin{bmatrix} 4 & 3 \\ 6 & -2 \end{bmatrix}$$

(b) $A = \begin{bmatrix} -3 & -2 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & 3 \\ -15 & -1 \end{bmatrix}$
(c) $A = \begin{bmatrix} -3 & -2 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & 3 \\ 15 & -1 \end{bmatrix}$
(d) $A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & -2 \\ -1 & -1 \end{bmatrix}$

QUESTION 2. (i) (4 points) consider the "mimic dot product" on $R^{2\times 2}$, i.e., for every $A, B \in R^{2\times 2}, \langle A, B \rangle = Trace(B^TA)$. Let $W = span\{ \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 4 & 4 \\ -4 & 0 \end{bmatrix} \}$. Use Gram-Schmidt algorithm and find an orthogonal basis for W.

(ii) (4 points) consider the "integral inner product" on P_3 , i.e., for every $f(x), k(x) \in P_3$, $\langle f(x), k(x) \rangle = \int_0^1 f(x)k(x) dx$. Find the distance between $f(x) = 2x^2 + x + 1$ and $k(x) = x^2 + 1$.

QUESTION 3. Let $B = \{(1,0,-1), (0,1,-1), (1,0,0)\}$ be a basis for R^3 and $C = \{(1,0), (0,1)\}$ be a basis for R^2 . Given $T : R^3 \to R^2$ is an *R*-homomorphism (i.e., Linear Transformation) such that T(1,0,-1) = (1,0), T(0,1,-1) = (1,0), and T(1,0,0) = (1,0).

(i) (6 points) Find the coordinate matrix presentation of T with respect to B and C, $[T]_{B,C}$

(ii) (3 points) Find T(2, 1, 1)

(iii) (5 points) Find Z(T) = Ker(T) = Null(T)

QUESTION 4. (i) (4 points) Assume the normal dot product on R^4 . Let $W = span\{(1,1,1,1), (0,1,0,0)\}$. Find a basis for W^{\perp}

(ii) (4 points) Given A is a 3×5 matrix such that $A \xrightarrow{2R_2} B \xrightarrow{R_1 \leftrightarrow R_3} C \xrightarrow{2R_1 + R_3 \to R_3} D$. Find elementary matrices E_1, E_2, E_3 such that $E_1E_2E_3A = D$

(iii) (4 points) Given A = (2, 4), B = (-1, 6) and C = (3, 7). Find the area of the triangle ABC.

QUESTION 5. (8 points) Let $W = span\{(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0)\}$ and $D = span\{(1,1,0,0,0), (0,0,0,0,1), (0,0,0,0,1,1)\}$

(i) Find a basis for $W \cap D$.

(ii) Find a basis for W + D

Faculty information