Final Exam MTH 221 , Summer 2022

Ayman Badawi

Score $=\overline{62}$

QUESTION 1. (20 points)
(i) Let $T: R^{2 \times 2} \rightarrow R^{2 \times 2}$ be an R-homomorphism, i.e., linear transformation, such that $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=$ $\left[\begin{array}{cc}3 a-b+2 d & 4 b+7 d \\ 5 c+d & 6 d\end{array}\right]$. Then the eigenvalues of T
(a) $3,7,5,6$
(b) 3, 4, 5, 6
(c) $3,4,1,6$
(d) 3, 4, 7,6
(ii) Given A is a 2×2 matrix with eigenvalues 1,2 , such that $E_{1}=\operatorname{span}\{(3,0)\}$ and $E_{2}=\operatorname{span}\{(0,4)\}$ Then $A^{3}=$
(a) $\left[\begin{array}{cc}27 & 0 \\ 0 & 64\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 64 \\ 0 & 8\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 27 \\ 0 & 8\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 8\end{array}\right]$
(iii) Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$ such that $|A|=0$. Let D be the solution set of the system of linear equations $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}-2 a_{1}+a_{2} \\ -2 b_{1}+b_{2} \\ -2 c_{1}+c_{2}\end{array}\right]$. Then
(a) $D=\operatorname{span}\{(-2,1,0)\}$
(b) $D=\{(-2,0,1)\}$
(c) D is infinite and $(-2,1,0) \in D$.
(d) $D=\{(-2,1,0)\}$
(iv) Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$ such that $|A|=-3$. Given $B=\left[\begin{array}{lll}-2 a_{1} & a_{2} & a_{3} \\ -2 c_{1} & c_{2} & c_{3} \\ -2 b_{1} & b_{2} & b_{3}\end{array}\right]$. Then $|B|=$
(a) -6
(b) 6
(c) 24
(d) -24
(v) Let A be a 3×3 matrix such that $C_{A}(\alpha)=(\alpha-1)(\alpha-b)(\alpha-c)$, where $b, c \in R$, $\operatorname{Trace}(A)=1$ and $|A|=-9$. Then $\left|A^{2}+I_{3}\right|$ is
(a) 82
(b) 10
(c) 100
(d) 200
(vi) Let $T: P_{3} \rightarrow P_{3}$ be an R-homomorphism (linear transformation), such that $T\left(a x^{2}+b x+c\right)=(3 a-b-c) x^{2}+3 b x+3 c$. Then T has exactly one eigenvalue, say a, then $E_{a}=$
(a) $\operatorname{span}\left\{x^{2}, x+1\right\}$
(b) $\operatorname{span}\{x-1\}$
(c) $\operatorname{spam}\left\{x^{2}, x-1\right\}$
(d) $\operatorname{Span}\{-x-1\}$
(vii) Assume that the normal dot product is defined on R^{4}. Given $\{Q, F,(1,0,0,2)\}$ is an orthogonal basis for a subspace W of R^{4}, for some points Q, F in R^{4}. Given $(4,23,51,13) \in W$. Then $(4,23,51,13)=$ $c_{1} Q+c_{2} F+c_{3}(1,0,0,2)$. Then $c_{3}=$
(a) 30
(b) 6
(c) 5
(d) 10
(viii) Given $B=\{(-6,-1),(7,1)\}$ is a basis for R^{2}. Then $[(13,2)]_{B}=$
(a) $(-1,1)$
(b) $(15,-103)$
(c) $(-80,93)$
(d) $(27,-25)$
(ix) Let B be a basis for R^{3} and $C=\{(2,2),(1,2)\}$ is a basis for R^{2}. Let $T: R^{3} \rightarrow R^{2}$ be a linear transformation such the coordinate matrix presentation of T with respect to B and C is $[T]_{B, C}=\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & -1 & 1\end{array}\right]$. Then $T(2,0,1)=$
(a) $(4,-1)$
(b) $(5,-1)$
(c) $(9,8)$
(d) $(7,6)$
(x) consider the "mimic dot product" on $R^{2 \times 2}$, i.e., for every $A, B \in R^{2 \times 2},<A, B>=\operatorname{Trace}\left(B^{T} A\right)$. Then the following matrices are orthogonal
(a) $A=\left[\begin{array}{cc}1 & 4 \\ -2 & 2\end{array}\right], B=\left[\begin{array}{cc}4 & 3 \\ 6 & -2\end{array}\right]$
(b) $A=\left[\begin{array}{cc}-3 & -2 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{cc}3 & 3 \\ -15 & -1\end{array}\right]$
(c) $A=\left[\begin{array}{lc}-3 & -2 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{cc}3 & 3 \\ 15 & -1\end{array}\right]$
(d) $A=\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right], B=\left[\begin{array}{cc}2 & -2 \\ -1 & -1\end{array}\right]$

QUESTION 2. (i) (4 points) consider the "mimic dot product" on $R^{2 \times 2}$, i.e., for every $A, B \in R^{2 \times 2},<A, B>=$ $\operatorname{Trace}\left(B^{T} A\right)$. Let $W=\operatorname{span}\left\{\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right],\left[\begin{array}{cc}4 & 4 \\ -4 & 0\end{array}\right]\right\}$. Use Gram-Schmidt algorithm and find an orthogonal basis for W.
(ii) (4 points) consider the "integral inner product" on P_{3}, i.e., for every $f(x), k(x) \in P_{3}, \quad<f(x), k(x)>=$ $\int_{0}^{1} f(x) k(x) d x$. Find the distance between $f(x)=2 x^{2}+x+1$ and $k(x)=x^{2}+1$.

QUESTION 3. Let $B=\{(1,0,-1),(0,1,-1),(1,0,0)\}$ be a basis for R^{3} and $C=\{(1,0),(0,1)\}$ be a basis for R^{2}. Given $T: R^{3} \rightarrow R^{2}$ is an R-homomorphism (i.e., Linear Transformation) such that $T(1,0,-1)=(1,0)$, $T(0,1,-1)=(1,0)$, and $T(1,0,0)=(1,0)$.
(i) (6 points) Find the coordinate matrix presentation of T with respect to B and $C,[T]_{B, C}$
(ii) (3 points) Find $T(2,1,1)$
(iii) (5 points) Find $Z(T)=\operatorname{Ker}(T)=\operatorname{Null}(T)$

QUESTION 4. (i) (4 points) Assume the normal dot product on R^{4}. Let $W=\operatorname{span}\{(1,1,1,1),(0,1,0,0)\}$. Find a basis for W^{\perp}
(ii) (4 points) Given A is a 3×5 matrix such that $A \xrightarrow{2 R_{2}} B \xrightarrow{R_{1} \leftrightarrow R_{3}} C \xrightarrow{2 R_{1}+R_{3} \rightarrow R_{3}} D$. Find elementary matrices E_{1}, E_{2}, E_{3} such that $E_{1} E_{2} E_{3} A=D$
(iii) (4 points) Given $A=(2,4), B=(-1,6)$ and $C=(3,7)$. Find the area of the triangle $A B C$.

QUESTION 5. (8 points) Let $W=\operatorname{span}\{(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0)\}$ and $D=\operatorname{span}\{(1,1,0,0,0),(0,0,0,0,1),(0,0,0,1,1)\}$
(i) Find a basis for $W \cap D$.
(ii) Find a basis for $W+D$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

